右侧
国内最专业的黑客技术博客
当前位置:网站首页 > 网络黑客 > 正文

线粒体定位marker_ZNFX线粒体定位

作者:hacker发布时间:2023-02-24分类:网络黑客浏览:183评论:2


导读:简述线粒体和叶绿体适应其功能的结构特点。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸...

简述线粒体和叶绿体适应其功能的结构特点。

线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含 有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体能为细胞的生命活动提供场所,是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂" (power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。 外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm,平整光滑,上面有较大的孔蛋白,可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。 内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构,厚约6nm。内膜对物质的通透性很低,只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴,大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白,调节基质中代谢代谢物的输出和输入。 线粒体内膜向基质折褶形成的结构称作嵴(cristae),嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar),另一是管状(tubular)。在高等动物细胞中主要是片状的排列,多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体,是一个多组分的复合物。 膜间隙 (intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。 基质 (matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。 叶绿体扁球状,厚约2.5微米,直径约5微米。具双层膜,内有间质,间质中含呈溶解状态的酶和片层。片层由闭合的中空盘状的类囊体垛堆而成,类囊体是形成高能化合物三磷酸腺苷(ATP)所必需。叶绿体外被由双层膜组成,膜间为10~20nm的膜间隙。外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。 内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。 (二)类囊体 是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。 许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(grana lamella)。基粒直径约0.25~0.8μm,由10~100个类囊体组成。每个叶绿体中约有40~60个基粒。 贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stroma lamella)。 由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。 类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱和脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统Ⅰ、光系统Ⅱ复合物等。 (三)基质 是内膜与类囊体之间的空间,主要成分包括: 碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。 叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。 一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。叶绿体的功能叶绿体(chloroplast):藻类和植物体中含有叶绿素进行光合作用的器官。 主要含有叶绿素、胡萝卜素和叶黄素,其中叶绿素的含量最多,遮蔽了其他色素,所有呈现绿色。主要功能是进行光合作用。几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成贮藏能量的有机物,同时产生氧。所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。

线粒体为什么也有基因?

首先这与线粒体的起源有关:

关于线粒体和叶绿体的起源,现在主要存在两种截然相反的观点:内共生起源学说与非共生起源学说(或分化学说)。两个学说各有其实验证据和支持者。近10多年由于古细菌的发现与研究,以及古细菌可能是真核生物起源的祖先的论断,十分有利于线粒体和叶绿体内共生起源学说的巩固和发展。

(一)内共生起源学说

许多科学家认为,线粒体和叶绿体分别起源于原始真核细胞内共生的细菌和蓝藻。1970年Margulis在分析了大量资料的基础上提出了一种设想,认为真核细胞的祖先是一种体积巨大的、不需氧的、具有吞噬能力的细胞,能将吞噬所得的糖类进行酵解取得能量。而线粒体的祖先——原线粒体则是一种革兰氏阴性菌,含有三羧酸循环所需的酶系和电子传递链,故它可利用氧气把糖酵解的产物丙酮酸进一步分解,获得比酵解更多的能量。当这种细菌被原始真核细胞吞噬后,即与宿主细胞间形成互利的共生关系,原始真核细胞利用这种细菌(原线粒体)充分供给能量,而原线粒体从宿主细胞获得更多的原料。

(二)非共生起源学说

该学说的支持者提出一种线粒体和叶绿体起源的设想,认为真核细胞的前身是一个进化上比较高等的好氧细菌,它比典型的原核细胞大,这样就要逐渐增加具有呼吸功能的膜表面,开始是通过细菌的细胞膜内陷、扩张和分化,后逐渐形成了线粒体和叶绿体的雏形。根据1974年Uzzell等人的观点,在进化的最初阶段,原核细胞的基因组进行复制并不伴有细胞分裂,然后基因附近的质膜内陷形成双层膜,分别将基因组包围在这些双层膜结构中,从而形成了原始线粒体、叶绿体等细胞器。后来在进化过程中进一步发生了分化,如线粒体和叶绿体的基因组丢失一些基因;细胞核的基因则有了高度发展;质体发展了光合作用;线粒体则演变为专具有呼吸功能的细胞器,于是逐渐形成了现在的真核细胞。

从目前看,对这两个学说尚有争议,各有其实验证据和支持者,因此,关于线粒体和叶绿体的起源,有待今后进一步探讨和研究。

参考资料:翟中和 王喜中 丁孝明 主编《细胞生物学》(高等教育出版社)

无论是那种起源方式 都支持了线粒体自身具有的基因组

线粒体基因组 指的是线粒体内的所有遗传物质。线粒体是真核细胞内能通过半自主复制进行繁殖的细胞器 。

组成线粒体基因组的遗传物质在结构上与原核生物遗传物质相似。线粒体染色体是环状DNA分子,但与原核生物不同的是,其要小得多并有多个拷贝。这种相似性支持线粒体为细胞内共生细菌的假说,例如内共生学说。

有性生殖物种的线粒体通过母系遗传。通过这种方式,线粒体遗传性疾病可以影响雄性和雌性,但只能通过雌性遗传给她的后代。

不同物种的真核生物线粒体基因组大小差异很大,但含量是恒定的,高等植物mtDNA链长250Kb~2000 Kb(80-800μm)。如玉米的mtDNA基因组有600 Kb(200μm)。真菌、昆虫直到哺乳动物显示出一种趋势,即从低等到高等直核生物mtDNA越来越小,排列越来越紧密。如酵母:~75Kb,粗糙脉孢菌:60Kb;曲霉:32Kb;爪蟾:17,533bp;牛:16,338bp;小鼠:16,295bp;人类仅16,569bp。链长的差异是由间隔区的内合子的数目和长度决定的,以上表明高等生物mtDNA基因排列是最经济的,此和核基因组的情况正好相反。

mtDNA是双链环状的分子,由于缺乏组蛋白,故不组成核小体。在线粒体中有和细菌细胞中相似的类核区(nuclecid regions),每个类核中含有几个拷贝的线粒体染色体。例如酵母每个线粒体含有10~30个类核,每个类核含有4~5mtDNA分子。由于每个酵母细胞中有1~45个线粒体,这样每个细胞就有很多mtDNA分子。线粒体染色体的多重性对于细胞的整个活性而言其贡献与核相比显得更为重要。

Anderson等于1981年测定了人线粒体基因组全序列,共16 569 bp,除了同启动DNA有关的D环区(D-loop)外,只有87个bp不参与基因的组成。现已确定有13个为蛋白质编码的区域,即细胞色素b、细胞色素氧化酶的3个亚基、ATP酶的2个亚基以及NADH脱氢酶的7个亚基的编码序列。另外还有分别编码16SrRNA和12SrRNA以及22个tRNA的DNA序列。除个别基因外,这些基因都是按同一个方向进行转录,而且tRNA基因位于rRNA基因和编码蛋白质的基因之间。

与核基因组相比,线粒体基因组有如下有趣的性质:

所有的基因都位于一个单一的环状DNA分子上。

遗传物质不为核膜所包被。

DNA不为蛋白质所压缩。

基因组没有包含那么多非编码区域(垃圾DNA或“内含子”)。

一些密码子与通用密码子不同。相反,与一些紫色非硫细菌相似。

一些碱基为两个不同基因的一部分:某碱基作为一个基因的末尾,同时作为下一个基因的开始。

这张图片是97年绘制的mtDNA基因组的示意图

Wolstenholme, D.R. 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216

高中生物线粒体重要知识点

线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,接下来我为你整理了高中生物线粒体重要知识点,一起来看看吧。

高中生物线粒体重要知识点:基本概念

线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。其直径在0.5到1.0微米左右。

除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。

线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。

高中生物线粒体重要知识点:结构

外膜

(out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5kDa以下的分子通过,1kDa以下的分子可自由通过。标志酶为单胺氧化酶。

内膜

(inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+ 梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素c氧化酶。

膜间隙

(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。

基质

(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNA 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+ 、Mg2+ 、Zn2+ 等离子

高中生物线粒体重要知识点:实验

一、目的与要求

了解提取线粒体的基本原理及其过程,通过光学显微镜的观察了解体外分离的线粒体的一般形态

二、 基本原理

线粒体具有完整的结构,一定的大小和质量,低温条件下在等渗液中破碎细胞,差速离心后,获得线粒体。经活性染料健那绿Janus green B染色,线粒体呈浅蓝色。

三、实验内容

1.线粒体的分离提取 2. 鼠肝的匀浆制备 3. 线粒体的活体染色

四、实验步骤

(一)动物组织线粒体的分离,提取与观察

显微镜检查:将1%Janus green B溶液按1:1比例加入线粒体悬液中,在室温或水浴中染15~20分钟,用吸管吸取一滴线粒体悬液,滴于载玻片上,加盖玻片后,放显微镜下进行观察,线粒体为蓝绿色圆形颗粒。

2.组织培养细胞的线粒体的提取与观察

操作中应该注意的问题

1. 整个操作过程为保证线粒体的完整,应尽量使操作时的环境如温度(0—4℃),pH (7.0左右)保持恒定,同时尽可能短操作时间。

2. 组培细胞消化时要特别小心,防止损失或反复。(损失指细胞脱落到消化液中)。

3. 匀浆时,所用的介质一定是等渗缓冲液,常用的有0.25 mol/L蔗糖溶液或生理盐水代替Hank’s液

4. 匀浆次数依照匀浆器的松紧而定,次数过少,细胞破损不完全,就会影响线粒体产量。

5. 所以取2/3上清夜用来制备线粒体是为防止细胞碎片过多影响观察。

线粒体的结构功能是什么?

线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔.

1、外膜 含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过.标志酶为单胺氧化酶.

2、内膜 含100种以上的多肽,蛋白质和脂类的比例高于3:1.心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌.通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统.如:丙酮酸和焦磷酸是利用H+梯度协同运输.线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用.内膜的标志酶为细胞色素C氧化酶.

3、膜间隙 是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm.由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似.标志酶为腺苷酸激酶.

4、基质 为内膜和嵴包围的空间.除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行.催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶.基质具有一套完整的转录和翻译体系.包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等.基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子

线粒体是什么?

线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含 有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂" (power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。

线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.5~1.0 μm, 在长度上变化很大, 一般为1.5~3μm, 长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)

在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体 常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外, 在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区 域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。

通俗的讲:细胞必须有能量的供给才会有活性,线粒体就是细胞中制造能量的器官,科学界也给线粒体起了一个别名叫做“power house”,即细胞的发电厂。一个细胞内含有线粒体的数目可以从十几个到数百个不等,越活跃的细胞含有的线粒体数目越多,如时刻跳动的心脏细胞和经常思考问题的大脑细胞含有线粒体的数目最大,皮肤细胞含有线粒体的数目比较少。科学家发现农民皮肤细胞的线粒体因常年在室外劳动受到损伤的程度远远高于其他室内职业者,线粒体受到损伤,细胞就会缺乏能量而死亡。我们的面部常年暴露在外,时时刻刻都在经受风吹雨打和各种污染颗粒的侵袭,因此面部细胞经常是因为过度的磨难而早夭。

形态与分布

线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。一般直径0.5~1μm,长1.5~3.0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。

超微结构

线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。

1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。

2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。

3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。它是内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、 线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。

4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。 线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。

线粒体的半自主性

1963年M. 和 S. Nass发现线粒体DNA(mtDNA)后,人们又在线粒体中发现了RNA、DNA聚合酶、RNA聚合酶、tRNA、核糖体、氨基酸活化酶等进行DNA复制、转录和蛋白质翻译的全套装备,说明线粒体具有独立的遗传体系。

虽然线粒体也能合成蛋白质,但是合成能力有限。线粒体1000多种蛋白质中,自身合成的仅十余种。线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白, 都是核基因编码, 在细胞质中合成后,定向转运到线粒体的,因此称线粒体为半自主细胞器。

利用标记氨基酸培养细胞,用氯霉素和放线菌酮分别抑制线粒体和细胞质蛋白质合成的方法,发现人的线粒体DNA编码的多肽为细胞色素c氧化酶的3个亚基,F0的2个亚基,NADH脱氢酶的7个亚基和细胞色素b等13条多肽。此外线粒体DNA还能合成12S和16SrRNA及22种tRNA。

mtDNA分子为环状双链DNA分子,外环为重链(H),内环为轻链(L )。基因排列非常紧凑,除与mtDNA复制及转录有关的一小段区域外,无内含子序列。每个线粒体含数个m tDNA,动物m tDNA 约16-20kb,大多数基因由H链转录, 包括2个rRNA , 14个tRNA 和12个编码多肽的mRNA , L链编码另外8个tRNA和一条多肽链。mtDNA上的基因相互连接或仅间隔几个核苷酸序列, 一些多肽基因相互重叠, 几乎所有阅读框都缺少非翻译区域。很多基因没有完整的终止密码, 而仅以T或TA 结尾,mRNA的终止信号是在转录后加工时加上去的。

线粒体在形态,染色反应、化学组成、物理性质、活动状态、遗传体系等方面,都很像细菌,所以人们推测线粒体起源于内共生。按照这种观点,需氧细菌被原始真核细胞吞噬以后,有可能在长期互利共生中演化形成了现在的线粒体。在进化过程中好氧细菌逐步丧失了独立性,并将大量遗传信息转移到了宿主细胞中,形成了线粒体的半自主性。

线粒体遗传体系确实具有许多和细菌相似的特征,如:①DNA为环形分子,无内含子;②核糖体为70S型;③RNA聚合酶被溴化乙锭抑制不被放线菌素D所抑制;④tRNA、氨酰基-tRNA合成酶不同于细胞质中的;⑤蛋白质合成的起始氨酰基tRNA是N-甲酰甲硫氨酰tRNA,对细菌蛋白质合成抑制剂氯霉素敏感对细胞质蛋白合成抑制剂放线菌酮不敏感。

此外哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:①UGA不是终止信号,而是色氨酸的密码;②多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;③AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体密码系统中有4个终止密码子(UAA,UAG,AGA,AGG)。

mtDNA表现为母系遗传。其突变率高于核DNA,并且缺乏修复能力。有些遗传病,如Leber遗传性视神经病,肌阵挛性癫痫等均与线粒体基因突变有关。

线粒体的增殖

线粒体的增殖是通过已有的线粒体的分裂,有以下几种形式:

1、间壁分离,分裂时先由内膜向中心皱褶,将线粒体分类两个,常见于鼠肝和植物产生组织中

2、收缩后分离,分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个,见于蕨类和酵母线粒体中。

3、出芽,见于酵母和藓类植物,线粒体出现小芽,脱落后长大,发育为线粒体。

线粒体为线状、长杆状、卵圆形或圆形小体,外被双层界膜。外界膜平滑,内界膜则折成长短不等的嵴并附有基粒。内外界膜之间为线粒体的外室,与嵴内隙相连,内界膜内侧为内室(基质室)。在合成甾类激素的内分泌细胞(如肾上腺皮质细胞、卵甾滤泡细胞、睾丸的Leydig细胞等),线粒体嵴呈小管状。内外界膜的通透性不同,外界膜的通透性高,可容许多种物质通过,而内界膜则构成明显的通透屏障,使一些物质如蔗糖和NADH全然不能通过,而其他物质如Na+ 和Ca 2+等也只有借助于主动运输才能通过。线粒体的基质含有电子致密的无结构颗粒(基质颗粒),与二价阳离子如Ca2+及Mg2+具有高度亲和力。基质中进行着β氧化、氧化脱羧、枸橼酸循环以及尿素循环等过程。在线粒体的外界膜内含有单胺氧化酶以及糖和脂质代谢的各种转移酶;在内界膜上则为呼吸链和氧化磷酸化的酶类。

线粒体是对各种损伤最为敏感的细胞器之一。在细胞损伤时最常见的病理改变可概括为线粒体数量、大小和结构的改变:

1.数量的改变 线粒体的平均寿命约为10天。衰亡的线粒体可通过保留的线粒体直接分裂为二予以补充。在病理状态下,线粒体的增生实际上是对慢性非特异性细胞损伤的适应性反应或细胞功能升高的表现。例如心瓣膜病时的心肌线粒体、周围血液循环障碍伴间歇性跛行时的骨骼肌线粒体的呈增生现象。

线粒体数量减少则见于急性细胞损伤时线粒体崩解或自溶的情况下,持续约15分钟。慢性损伤时由于线粒体逐渐增生,故一般不见线粒体减少(甚至反而增多)。此外,线粒体的减少也是细胞未成熟和(或)去分化的表现。

2.大小改变细胞损伤时最常见的改变为线粒体肿大。根据线粒体的受累部位可分为基质型肿胀和嵴型肿胀二种类型,而以前者为常见。基质型肿胀时线粒体变大变圆,基质变浅、嵴变短变少甚至消失(图1-9)。在极度肿胀时,线粒体可转化为小空泡状结构。此型肿胀为细胞水肿的部分改变。光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线粒体。嵴型肿较少见,此时的肿胀局限于嵴内隙,使扁平的嵴变成烧瓶状乃至空泡状,而基质则更显得致密。嵴型肿胀一般为可复性,但当膜的损伤加重时,可经过混合型而过渡为基质型。

线粒体为对损伤极为敏感的细胞器,其肿胀可由多种损伤因子引起,其中最常见的为缺氧;此外,微生物毒素、各种毒物、射线以及渗透压改变等亦可引起。但轻度肿大有时可能为其功能升高的表现,较明显的肿胀则恒为细胞受损的表现。但只要损伤不过重、损伤因子的作用不过长,肿胀仍可恢复。

线粒体的增大有时是器官功能负荷增加引起的适应性肥大,此时线粒体的数量也常增多,例如见于器官肥大时。反之,器官萎缩时,线粒体则缩小、变少。

3.结构的改变 线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加。嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高。

在急性细胞损伤时(大多为中毒或缺氧),线粒体的嵴被破坏;慢性亚致死性细胞损伤或营养缺乏时,线粒体的蛋白合成受障,以致线粒体几乎不再能形成新的嵴。

根据细胞损伤的种类和性质,可在线粒体基质或嵴内形成病理性包含物。这些包含物有的呈晶形或副晶形(可能由蛋白构成),如在线粒体性肌病或进行性肌营养不良时所见,有的呈无定形的电子致密物,常见于细胞趋于坏死时,乃线粒体成分崩解的产物(脂质和蛋白质),被视为线粒体不可复性损伤的表现。线粒体损伤的另一种常见改变为髓鞘样层状结构的形成,这是线粒体膜损伤的结果。

衰亡或受损的线粒体,最终由细胞的自噬过程加以处理并最后被溶酶体酶所降解消化。

线粒体怎样制造能量

我们每时每刻都在呼吸,目的是把氧气吸入体内用于制造生物体可利用的能量分子ATP。氧气被线粒体利用制造能量的过程如同发电厂燃烧煤发电。线粒体内有两个主要部件参与能量的制造,一个部件叫做呼吸链,另一个部件叫做三磷酸腺苷酶(简称ATP酶)。顾名思义呼吸链是直接利用氧气把食物燃烧的部件,食物中储存有光合作用固化下来的太阳能,燃烧食物如同发电厂燃煤锅炉的作用,目的是把固化的太阳能释放出来推动发电机发电。ATP酶本质上是一个可以发电的分子马达,像锅炉燃煤推动发电机转动生产电流一样,固化的太阳能释放出来推动分子马达的转动可以制造能量分子ATP。我们每人每天大约消耗相当于体重数量的能量分子ATP,因此,线粒体不断制造ATP分子是维持生命活力所必需的。

线粒体与衰老

线粒体是直接利用氧气制造能量的部位,90%以上吸入体内的氧气被线粒体消耗掉。但是,氧是个“双刃剑”,一方面生物体利用氧分子制造能量,另一方面氧分子在被利用的过程中会产生极活泼的中间体(活性氧自由基)伤害生物体造成氧毒性。生物体就是在不断地与氧毒性进行斗争中求得生存和发展的,氧毒性的存在是生物体衰老的最原初的原因。线粒体利用氧分子的同时也不断受到氧毒性的伤害,线粒体损伤超过一定限度,细胞就会衰老死亡。生物体总是不断有新的细胞取代衰老的细胞以维持生命的延续,这就是细胞的新陈代谢。

线粒体与美容

保持线粒体完好无损就是保持了细胞的活力,拥有健康的肌肤细胞就是留住了青春。这个道理只有细细的品味,才能从中受益。皮肤细胞的新陈代谢就是自然的皮肤更新过程,新陈代谢旺盛细胞更新速率就快,总有一些新生的细胞出现在脸上,才有美丽青春的魅力。

环境监测需要什么设备

环境监测包括很多方面的检测,有水、气、声、土方面,具体项目不同和检测要求不同也有不同的设备,一般大型设备有分光光度计、原子吸收分光光度计、气相色谱仪、液相色谱仪等

标签:ZNFX线粒体定位


已有2位网友发表了看法:

  • 访客

    访客  评论于 2023-02-24 18:44:45  回复

    、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位

  • 访客

    访客  评论于 2023-02-24 17:18:24  回复

    )类囊体 是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。 许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒

欢迎 发表评论:

网络黑客排行
最近发表
标签列表